



# Ultracur3D® RG 35 Rigid | HDT 80 | Clear

# **Extended TDS**

Complete Technical Documentation and Testing Summary



Version: 2.0



# **Contents**

| Technical Data Sheet            | 3  |
|---------------------------------|----|
| Long-Term UV                    | 6  |
| Industrial Chemical Resistance  | 8  |
| Biocompatibility                | 10 |
| Sterilization                   | 11 |
| Material Model & FEA Simulation | 13 |





### **Technical Data Sheet**

# Rigid resin with optimum combination of strength, stiffness and temperature resistance.

| General Properties     | Norm                               | Typical Values         |
|------------------------|------------------------------------|------------------------|
| Appearance             | -                                  | Clear                  |
| Viscosity, 25°C        | Cone/Plate Rheometer <sup>1)</sup> | 900 mPas               |
| Viscosity, 30°C        | Cone/Plate Rheometer <sup>1)</sup> | 600 mPas               |
| Density (Printed Part) | ASTM D792                          | 1.2 g/cm <sup>3</sup>  |
| Density (Liquid Resin) | ASTM D4052-18a                     | 1.12 g/cm <sup>3</sup> |

| Tensile Properties <sup>2)</sup> | Norm      | Typical Values |
|----------------------------------|-----------|----------------|
| E Modulus                        | ASTM D638 | 2600 MPa       |
| Ultimate Tensile Strength        | ASTM D638 | 80 MPa         |
| Elongation at Break              | ASTM D638 | 6%             |

| Flexural Properties | Norm      | Typical Values |
|---------------------|-----------|----------------|
| Flexural Modulus    | ASTM D790 | 2400 MPa       |
| Flexural Strength   | ASTM D790 | 110 MPa        |

| Impact Properties               | Norm      | Typical Values        |
|---------------------------------|-----------|-----------------------|
| Notched Izod (Machined), -30°C  | ASTM D256 | 11 J/m                |
| Notched Izod (Machined), 23°C   | ASTM D256 | 23 J/m                |
| Unnotched Izod, 23°C            | ASTM D256 | 115 J/m               |
| Notched Charpy (Machined), 23°C | ISO 179-1 | 0.6 kJ/m <sup>2</sup> |

| Thermal Properties | Norm                      | Typical Values             |
|--------------------|---------------------------|----------------------------|
| HDT at 0.45 MPa    | ASTM D648                 | 83°C                       |
| HDT at 1.82 MPa    | ASTM D648                 | 64°C                       |
| Flammability       | UL 94 (1.5 mm)            | НВ                         |
| Glow-wire Test     | IEC 60695-2-12/-13 (2 mm) | GWIT: 650°C<br>GWFI: 625°C |

The data contained in this publication is based on our current knowledge and experience. In view of the many factors that may affect processing and application of our product, this data does not relieve processors from carrying out their own investigations and tests; neither does this data imply any guarantee of certain properties, nor the suitability of the product for a specific purpose.

Any descriptions, drawings, photographs, data, proportions, weights etc. given herein may change without prior information and do not constitute the agreed contractual quality of the product. It is the responsibility of the recipient of our products to ensure that any proprietary rights and existing laws and legislation are observed.

The safety data given in this publication is for informational purposes only and does not constitute a legally binding MSDS. The relevant MSDS can be obtained upon request from your supplier or you may contact BASF 3D Printing Solutions GmbH directly at sales@basf-3dps.com.



Typical Values

PASS<sup>4)</sup>



Thermal Properties

Systemic Toxicity - In Vitro

**Endotoxins and Pyrogens** 

Detection

| memai Properties                             | NOTH                    | i ypicai values                   |
|----------------------------------------------|-------------------------|-----------------------------------|
| Glass transition temperature (DMA, tan(d))   | ASTM D4065              | 119°C                             |
| Dielectric/Electric Properties               | Norm                    | Typical Values                    |
| Electrical Strength                          | DIN EN 60243-1          | 37 kV / mm                        |
|                                              |                         |                                   |
| Biocompatibility                             | Norm                    | Typical Values                    |
| Biocompatibility  Cytotoxicity – Neutral Red | Norm ISO 10993-5 (2009) | Typical Values PASS <sup>4)</sup> |
|                                              |                         |                                   |

ISO 10993-11 (2018)

| In Vitro Skin Irritation | OECD Guideline No. 439 | PASS <sup>4)</sup> |
|--------------------------|------------------------|--------------------|

| Other                                      | Norm       | Typical Values |
|--------------------------------------------|------------|----------------|
| Hardness Shore D                           | ASTM D2240 | 85             |
| Water Absorption,<br>Short-Term (24 hours) | ASTM D570  | 0.33%          |
| Water Absorption, Long-Term (>4000 hours)  | ASTM D570  | 2.40%          |

Mechanical properties overview

- Determined with TA-Instrument DHR rheometer, cone/plate, diameter 60 mm, shear rate 100 s<sup>-1</sup>
- 2) Tensile type ASTM D638 type IV, Pulling speed 50 mm/min
- Patch test on 10 volunteers

4) For the statement on Biocompatibility data see Chapter: Biocompatibility.

If not noted otherwise, all specimens are 3D printed. Samples were tested at room temperature, 23°C. ASTM sample size (L x W x H): ASTM D790 80 x 4 x10 mm, ASTM D256 63 x 3.2 x 12 mm, ASTM D648 127 x 3.2 x 13 mm, ISO 179-1 80 x 4 x 10 mm, UL 94 125 x 1.5 x 13 mm, IEC 60695-2-12/-13 60 x 2 x 60 mm.

The data contained in this publication is based on our current knowledge and experience. In view of the many factors that may affect processing and application of our product, this data does not relieve processors from carrying out their own investigations and tests; neither does this data imply any guarantee of certain properties, nor the suitability of the product for a specific purpose.

Any descriptions, drawings, photographs, data, proportions, weights etc. given herein may change without prior information and do not constitute the agreed contractual quality of the product. It is the responsibility of the recipient of our products to ensure that any proprietary rights and existing laws and legislation are observed.

The safety data given in this publication is for informational purposes only and does not constitute a legally binding MSDS. The relevant MSDS can be obtained upon request from your supplier or you may contact BASF 3D Printing Solutions GmbH directly at sales@basf-3dps.com.



#### **International Material Data System (IMDS)**

This material is listed in the IMDS (International Material Data System), which contains information on materials used in the automotive industry. Access to the database can be granted on request by sharing the IMDS ID with us (<u>sales@basf-3dps.com</u>).

#### **Printing Performance**

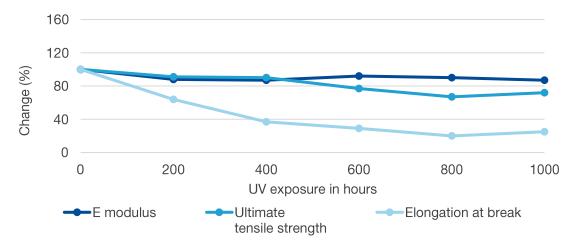
The combination of 3D printer and material has a huge impact on the quality of the parts produced. The measured design characteristics as well as the printing speed can be found in the <u>Printing Evaluation Guideline of Ultracur3D® Resins</u>.





## Long-Term UV

Durability is a key feature for the components utilized within many industries, as they expect the materials used to withstand years of exposure to the elements. Through the effects of UV radiation, photopolymers can degrade over time. The aging can be caused by the influence of UV light, heat and water. The degree of ageing depends on duration and intensity.


#### **Test Method and Specimens**

The ageing tests were performed with ASTM D638 type IV tensile bars and color cones as per ISO 4892-2:2013 method A, cycle 1.

| Cycle | Exposure                 | Irra                                          | diance Black                           |                                       |                        |                  | Relative |
|-------|--------------------------|-----------------------------------------------|----------------------------------------|---------------------------------------|------------------------|------------------|----------|
| No.   | period                   | Broadband<br>(300 nm to<br>400 nm)<br>in W/m² | Narrowband<br>(340 nm)<br>in W/(m² nm) | standard<br>tempera-<br>ture<br>in °C | tempera-<br>ture in °C | humidity<br>in % |          |
|       | 102 min<br>dry           | 60 ± 2                                        | 0.51 ± 0.02                            | 65 ± 3                                | 38 ± 3                 | 50 ± 10          |          |
| 1     | 18 min<br>water<br>spray | 60 ± 2                                        | 0.51 ± 0.02                            | -                                     | -                      | -                |          |

Testing conditions for ISO 4892-2 method A, cycle 1

#### **Mechanical Testing**



Change in mechanical properties after accelerated weathering



The final values after 1000 hours of long-term UV exposure can be found below.

| Property                  | Before long-term UV exposure | After 1000 hours of UV exposure |
|---------------------------|------------------------------|---------------------------------|
| E modulus                 | 2870 MPa                     | 2510 MPa                        |
| Ultimate tensile strength | 70 MPa                       | 50 MPa                          |
| Elongation at break       | 10%                          | 2%                              |

Mechanical properties before and after 1000 hours of UV exposure as per ISO 4892:2 method A

#### Coloration

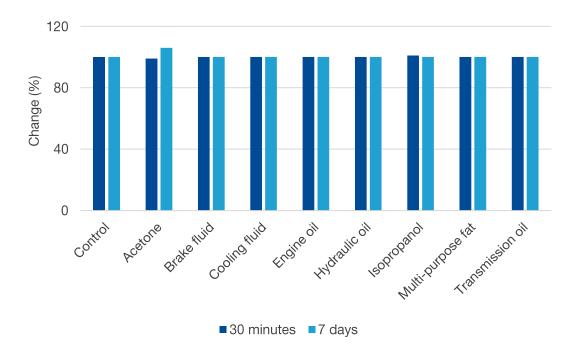
After being exposed up to 1000 hours, only slight additional yellowing compared to the reference sample could be detected.



Effect of UV exposure on color of the specimens






### **Industrial Chemical Resistance**

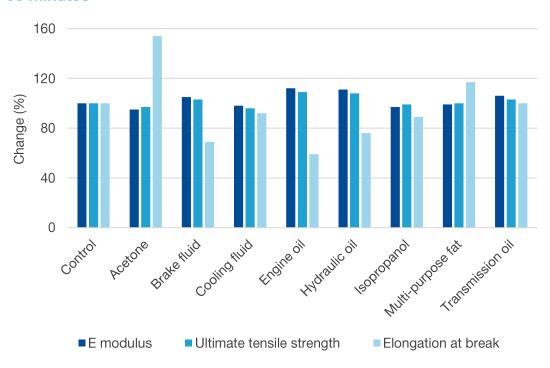
The resistance of resin materials against chemicals, solvents and other contact substances is an important criterion of selection for many industrial applications. General chemical resistance depends on the period of exposure, the temperature, the quantity, the concentration and the type of the chemical substance. When exposed to industrial chemicals, the chemical bonds of photopolymers can break or degrade, causing a change in the mechanical properties.

#### **Test Method and Specimens**

ASTM D638 type IV tensile bars were soaked in each fluid at room temperature, one set for 30 minutes and one set for 7 days. Upon completion of the soaking time, the parts were removed from the test fluid and were dried to measure the weight and the mechanical properties.

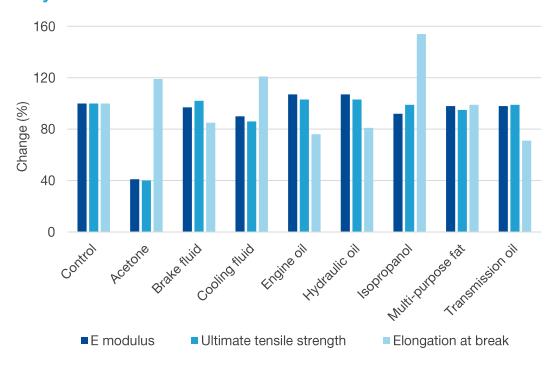
#### **Weight Measurement**




Change in weight after immersion time






#### **Mechanical Testing**

#### 30 minutes



Change in mechanical properties after 30 minutes immersion

#### 7 days



Change in mechanical properties after 7 days immersion



## **Biocompatibility**

Product: Ultracur3D® RG 35
Revision: 29th of March 2021

3D printed test items of the above stated product have fulfilled the requirements of tests as stated below:

**Cytotoxicity Testing- Neutral Red:** 

(ISO 10993-5 (2009))

In Vitro Skin Irritation Testing:

(OECD Guideline No. 439)

**Human Skin Irritation Test:** 

(ISO 10993-10 (2013))6)

In Vivo Sensitization Testing- Local Lymph Node Assay:

(ISO 10993-10 (2013); OECD Guideline No. 429)

Systemic Toxicity - In Vitro Endotoxins and Pyrogens Detection:

(ISO 10993-11 (2018))

6) Patch test on 10 volunteers.

The biocompatibility tests were recorded on test specimen of the above referenced product to show compatibility of the material in general. The biocompatibility tests listed are not part of any continuous production protocol. The test assessments reflect only the test specimen and have to be retested on the final product. It remains the responsibility of the device manufacturers and /or end-users to determine the suitability of all printed parts for their respective application.

#### For notice:

We give no warranties, expressed or implied, concerning the suitability of above-mentioned product for use in any medical device and pharmaceutical applications.

All information contained in this document is given in good faith and is based on sources believed to be reliable and accurate at the date of publication of this document.

It is the responsibility of those to whom we supply our products to ensure that any proprietary rights and existing laws and legislation are observed. The certificate is exclusively for our customers and respective competent authorities. It is not intended for publication either in printed or electronic form (e.g. via Internet) by others. Thus, neither partial nor full publication is allowed without written permission. This product information was generated electronically and is valid without signature.



### **Sterilization**

Sterilization is an essential requirement in many applications especially when used in the medical field. Testing not only ensures the material quality but also determines how effectively the chosen sterilization process is eliminating potential microorganisms.

#### **Test Method and Specimens**

Four different sterilization techniques were tested according to the conditions listed below, and their effect on mechanical properties and part color was investigated.

#### **E-Beam Sterilization**

The samples were exposed to 36.04 – 39.26 kGy (calculated dose).

#### **Ethylene Oxide (EtO) Sterilization**

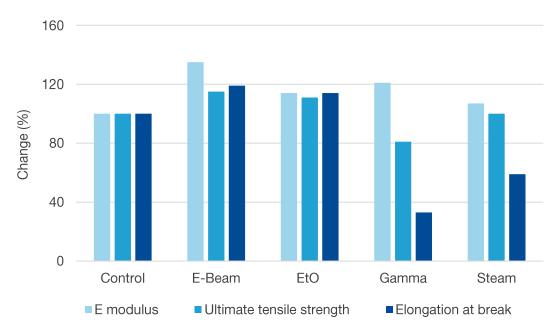
| EtO sterilization parameters  | Settings  |
|-------------------------------|-----------|
| Preconditioning temperature   | 48°C      |
| Preconditioning humidity      | 60%       |
| Preconditioning time          | 8 hours   |
| Chamber temperature           | 45°C      |
| Vacuum                        | 75 mbar A |
| EO dwell time                 | 3 hours   |
| EO concentration (calculated) | 610 mg/l  |
| Postconditioning time         | 48 hours  |
| Postconditioning temperature  | 45°C      |

Testing conditions Ethylene Oxide

#### **Gamma Sterilization**

The samples were exposed to 37.1 – 37.5 kGy gamma radiation (measured via dosimeter).






#### **Steam Sterilization**

| Steam sterilization parameters | Settings   |
|--------------------------------|------------|
| Vacuum pulses                  | 4          |
| Temperature                    | 134°C      |
| Pressure                       | 210 kPa    |
| Holding time                   | 4 minutes  |
| Drying time                    | 20 minutes |

Testing conditions steam sterilization

#### **Mechanical Testing**

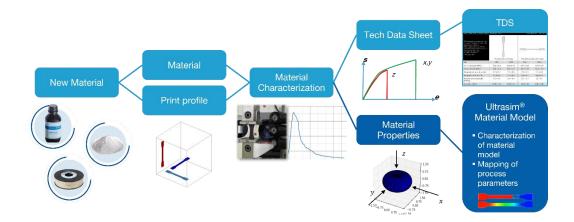


Change in mechanical properties after sterilization

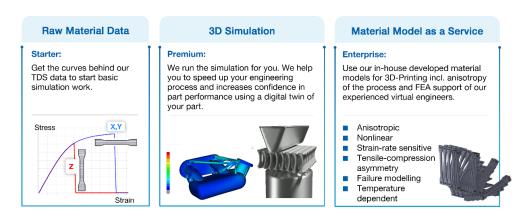
#### Coloration

Depending on the sterilization process used, different changes in color could be observed as shown below.




Color discs before and after sterilization






### **Material Model & FEA Simulation**

3D simulation helps to speed up the engineering process using a digital twin. We offer 3 easy methods to get started. Support is available on request (<u>ultrasim3d-support@basf-3dps.com</u>).



Material modeling workflow



Ultrasim® 3D simulation (FEA)

|                  | Available<br>temperatures |      | Strain rate / loads |                 | Print<br>Orientation |                   |
|------------------|---------------------------|------|---------------------|-----------------|----------------------|-------------------|
|                  | Low                       | 23°C | High                | Quasi<br>static | High<br>speed        | / Aniso-<br>tropy |
| Ultracur3D®RG 35 |                           | •    |                     | •               |                      |                   |

- Validated, available as Material Data Set (Can be converted into a Ultrasim<sup>®</sup> Material Model)
- Validated, available via Ultrasim® Material Model
- O O Preliminary

Simulation material availability